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Abstract
The technique of damage spreading is used to study the phase diagram of
the easy axis anisotropic Heisenberg antiferromagnet on two geometrically
frustrated lattices. The triangular and kagome systems are built up from
triangular units that either share edges or corners, respectively. The triangular
lattice undergoes two sequential Kosterlitz–Thouless transitions while the
kagome lattice undergoes a glassy transition. In both cases, the phase
boundaries obtained using damage spreading are in good agreement with those
obtained from equilibrium Monte Carlo simulations.

PACS number: 75.40.Cx

1. Introduction

Frustrated antiferromagnets are particularly interesting because they allow novel kinds of low-
temperature magnetic states to develop [1, 2] which are quite different from those observed in
conventional magnets [3]. When the frustration is due entirely to the geometry of the lattice,
exact results for the S = 1/2 Ising model on the triangular [4] and kagome [5] lattices have
shown that there is no long-range order at any temperature and the system has a macroscopic
ground-state degeneracy. In the triangular case, the spin–spin correlation function decays
with a power law [6] whereas, in the kagome geometry, it decays exponentially at zero
temperature [7, 8]. For isotropic vector spin models (XY or Heisenberg) on a triangular lattice
[9–11] where the elementary triangles share edges, the frustration is partially relieved and a
noncollinear planar ground-state forms with neighbouring spins making angles of 120◦. Finite
temperature transitions are evident in both cases (XY and Heisenberg) but are topological in
nature. However, for the kagome lattice, the cornering sharing geometry leads to a disordered
ground state for the Heisenberg model with the phenomenon of order by disorder occurring
in the limit T → 0 with fluctuations favouring coplanar spin configurations [12].
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In order to explore the Heisenberg model on these geometrically frustrated lattices, various
types of perturbations have been applied and have shown a strong effect on the ground-state
manifold [13]. We consider the following anisotropic Hamiltonian

H = J
∑

i<j

(SixSjx + SiySjy + ASizSjz) (1)

where (Siα, α = x, y, z) represents a classical three-component spin of unit magnitude located
at each site i of a (triangular/kagome) lattice and the exchange interactions are restricted to
nearest-neighbour pairs of sites. The parameter A describes the strength of the exchange
anisotropy. We restrict our attention to the case where A > 1 represents an easy-axis
anisotropy and we measure temperature and energy in units of J = 1. The limit A → 1
corresponds to the isotropic Heisenberg model whereas the limit A → ∞ corresponds to an
infinite spin Ising model.

Monte Carlo studies have shown for the triangular lattice the existence of two distinct
KT types of defect-mediated phase transitions at finite temperature [14, 15] for A > 1.
By examining the limit A → 1, the transition at the Heisenberg point also appears to be
purely topological in character [16] but with exponentially decaying spin correlations in
the low-temperature phase. Studies of the same model on the kagome lattice [17, 18] indicate
the existence of a finite, but very low, temperature ferromagnetic transition for intermediate
values of A. Static results for the magnetization, susceptibility and specific heat indicate an
Ising-like transition but with a nonuniversal critical behaviour [18] in which the values of the
exponents vary with the strength of the anisotropy A. The individual spins do not exhibit any
long-ranged spatial order and resemble a glassy phase. An analysis of the time evolution of
the double time spin auto-correlation function following a quench of the system from infinite
temperature into a non-equilibrium state at low temperature displays the phenomenon of aging
which is a characteristic of many glassy systems. Additional evidence for the glassy nature
of this low-temperature state has also recently been found in a study of relationship of the
spin auto-correlation function to the response of the system to an external magnetic field [19].
A violation of the fluctuation dissipation theorem is observed with properties similar to both
structural glasses and spin glasses.

2. Method and results

In the present work we present a numerical study of the model described by Hamiltonian
(1) for both lattices using a damage spreading algorithm. In the damage spreading method
[21], the damage distance between two different initial spin configurations is measured as they
evolve with the same thermal noise. The distance between two configurations is defined in the
following way: if S(A)

i and S(B)
i are the spins of the two different replicas, then the distance

between them at time t is defined as

DAB(t) = 1

4N

N∑

i=1

∣∣S(A)
i − S(B)

i

∣∣2 = 1

2N

N∑

i=1

(
1 − S(A)

i .S(B)
i

)
(2)

where N is the total number of spins and 0 � DAB(t) � 1. The procedure of the spreading
of damage is as follows: for a given value of the anisotropy A and temperature T we first
initialize the system S(A)

i in a random configuration and then let it evolve to a steady state.
Then we make two additional copies of the system, S(B)

i and S(C)
i . We introduce damage in

both systems B and C by inverting a fraction of the spins. The two copies B and C correspond
to cases where (1) a randomly chosen spin is flipped with DAB(0) = 1/N and (2) all the
spins are flipped with DAC(0) = 1. Given these different initial conditions we let all the



Damage spreading in two-dimensional geometrically frustrated lattices 8551

L=1 L=2

L=3

(a) (b)

L=3

L=2

Figure 1. The two geometrically frustrated lattices: (a) the triangular and (b) the kagome lattices.

configurations evolve in time according to the same dynamics, i.e, the same rule and the same
random number sequence in the Monte Carlo procedure. After a relaxation time needed for
the damaged copies to be thermalized, we monitor the damage in order to calculate the time
average 〈D(t)〉 of the distance (2). This procedure is repeated for many different samples
(initial configurations A and damaged configurations B and C). At high temperatures, the
averages 〈DAB〉 and 〈DAC〉 are equal but at low temperatures they approach different values.
We interpret this result as indicating that the free energy landscape has a single valley at high
temperature and that a transition to a more complicated multi-valley landscape occurs as the
temperature is lowered.

Figure 1 shows the geometry of the two lattices for different sizes L. In both cases the
number of sites N = 3L2 and periodic boundary conditions are applied. Our simulations have
been performed for sizes ranging from L = 12 to L = 60, but all of the results are presented
with L = 24 where finite size effects are sufficiently small and a larger number of Monte
Carlo sweeps (MCS) are possible. For each temperature we calculate the time average of the
damage using 10 000 MCS and typically 200 samples were used to compute the averages.

In the case of the triangular lattice, recent Monte Carlo simulations [16] have shown the
existence of two finite temperature KT transitions. The upper transition Tc2 corresponds to
the onset of power law correlations for the spin components parallel to the easy axis A > 1 and
the lower transition Tc1 corresponds to the onset of power law correlations for the perpendicular
components. In both cases there is a corresponding spin stiffness coefficient which vanishes.
In order to identify both transitions, we also compute the following measure of the damage
distance associated with the transverse (xy) components of the spins in the two replicas

DAB
xy = 1

2N

N∑

i=1

(
1 − S

(A)
ix S

(B)
ix − S

(A)
iy S

(B)
iy

)
. (3)

As shown in figure 2(a) for the isotropic Heisenberg case (A = 1) both distances are
independent of the initial damage at high temperature but become dependent on it below the
same temperature Tc ∼ 0.31 which agrees quite well with previous estimates of the transition
temperature using equilibrium methods [9, 10]. However, for values of A > 1, three different
temperature regions are observed as shown in figure 2(b) for the case A = 2: (i) T < Tc1,
both distances depend on the initial damage, (ii) Tc1 < T < Tc2, 〈Dxy〉 is independent of
the initial damage whereas 〈D〉 still depends on the initial damage and (iii) T > Tc2, both
distances become independent of the initial damage. The damage spreading approach is able
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Figure 2. Average distance 〈D〉 versus temperature for the triangular lattice with L = 24 and
two different values of the anisotropy (a) A = 1 and (b) A = 2 for different initial damage:
D(0) = 1.0 (plus) and D(0) = 1/N (crosses). The insets show the average distance associated
with the transverse components.

to identify both transitions which, in this case, correspond to defect unbinding transitions and
it also predicts a finite-temperature transition in the Heisenberg limit.

Our results for the Kagome lattice are shown in figure 3. In this case there are only two
phases: a low-temperature phase T < Tc where the value of 〈D〉 is dependent on the initial
value of D and a high-temperature phase T > Tc where 〈D〉 is independent of the initial
damage. The transverse distance Dxy does not indicate any transition at all. The value of
Tc depends on the value of the anisotropy A and approaches zero in both the A → 1 and
A → ∞ limits. In figure 4, we show the phase diagrams obtained using this damage spreading
approach for both lattices. Both phase diagrams are in remarkably good agreement with those
obtained from equilibrium studies [14, 15, 17, 19] within errorbars.



Damage spreading in two-dimensional geometrically frustrated lattices 8553

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

<D>

T

A=2

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

<D>

T

A=40

(b)

Figure 3. Averaged distance 〈D〉 versus temperature for the kagome lattice with L = 24 and two
different values of the anisotropy (a) A = 2 and (b) A = 40 for the initial damage D(0) = 1.0
(plus) and D(0) = 1/N (crosses).
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Figure 4. Phase diagrams obtained from the damage spreading method for (a) the triangular and
(b) the kagome lattices, respectively. The two lines in (a) correspond to the equations

Tc1 = Tc
4(2A+1)

3(1+A)2 and Tc2 = Tc
4A2(A+2)

3(1+A)2 with Tc = (0.305 ± 0.005) [15].

3. Conclusion

In summary, we have shown that the technique of damage spreading can be applied successfully
to models where analytical solutions are lacking and where the low-temperature phase displays
novel behaviour associated with geometrical frustration. We can clearly identify the damage
transitions with those obtained previously using conventional Monte Carlo simulations. Both
defect-mediated and glass-like transitions are detected by the method. Further work is needed
to extract more detailed information about the critical properties using this approach.
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